Posibles aplicaciones de los consorcios de bacterias de microalgas para el tratamiento de residuos y bioproductos valiosos
DOI:
https://doi.org/10.29105/agricolis.v1i1.6Palabras clave:
microalgas, bacterias, bioproductos valiososResumen
: La aplicación de microalgas y bacterias en el tratamiento de aguas residuales ha despertado interés debido a la mayor adaptabilidad y estabilidad ambiental resultante de sus interacciones, superando las obtenidas con microalgas a las de sostenibilidad y competitividad económica. Este manuscrito pretende apoyar la literatura existente y relevante sobre el uso de microalgas y bacterias. Como resultado, numerosos estudiosos y autores han hecho hincapié en las investigaciones recientes sobre la biotecnología de algas y bacterias, por lo que esta revisión será útil para avanzar y facilitar el desarrollo tecnológico de los procesos biológicos.
Descargas
Citas
Dular, M., Griessler-Bulc, T., Gutierrez-Aguirre, I., Heath, E., Kosjek, T., Krivograd Klemenčič, A., Oder, M., Petkovšek, M., Rački, N., Ravnikar, M., Šarc, A., Širok, B., Zupanc, M., Žitnik, M., & Kompare, B. (2016). Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry, 29, 577–588. https://doi.org/10.1016/j.ultsonch.2015.10.010
Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Mu, J., Liu, M., & Cui, W. (2016). Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. Journal of Chemical Technology and Biotechnology, 91(10), 2713–2719. https://doi.org/10.1002/jctb.4879
Goh, P. S., Lau, W. J., Ismail, A. F., Samawati, Z., Liang, Y. Y., & Kanakaraju, D. (2023). Microalgae-Enabled Wastewater Treatment: A Sustainable Strategy for Bioremediation of Pesticides. Water (Switzerland), 15(1). https://doi.org/10.3390/w15010070
Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2016). A review on the use of microalgal consortia for wastewater treatment. ALGAL. https://doi.org/10.1016/j.algal.2016.11.008
Hena, S., Gutierrez, L., & Croué, J. P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials, 403(June 2020). https://doi.org/10.1016/j.jhazmat.2020.124041
Ishizaki, R., Noguchi, R., Putra, A. S., Ichikawa, S., Ahamed, T., & Watanabe, M. M. (2020). Reduction in energy requirement and CO2 emission for microalgae oil production using wastewater. Energies, 13(7). https://doi.org/10.3390/en13071641
Khan, S., Thaher, M., Abdulquadir, M., Faisal, M., Mehariya, S., Al-Najjar, M. A. A., Al-Jabri, H., & Das, P. (2023). Utilization of Microalgae for Urban Wastewater Treatment and Valorization of Treated Wastewater and Biomass for Biofertilizer Appli-cations. Sustainability, 15(22), 16019. https://doi.org/10.3390/su152216019
La Bella, E., Baglieri, A., Fragalà, F., & Puglisi, I. (2022). Multipurpose Agricultural Reuse of Microalgae Biomasses Employed for the Treatment of Urban Wastewater. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020234
Lauritano, C., Rizzo, C., Giudice, A. Lo, & Saggiomo, M. (2020). Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms, 8(12), 1–30. https://doi.org/10.3390/microorganisms8121957
Lee, C. S., Lee, S. A., Ko, S. R., Oh, H. M., & Ahn, C. Y. (2015). Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. In Water Research (Vol. 68). https://doi.org/10.1016/j.watres.2014.10.029
Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H. Q., Muñoz, R., & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127–1137. https://doi.org/10.1016/j.biortech.2017.06.054
Mhedhbi, E., Khelifi, N., Foladori, P., & Smaali, I. (2020). Real-Time behavior of a microalgae-bacteria consortium treating wastewater in a sequencing batch reactor in response to feeding time and agitation mode. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071893
Microalgae, W. U. (2024). Wastewater Using Microalgae.
Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
Ríos, F., Lechuga, M., Lobato-Guarnido, I., & Fernández-Serrano, M. (2023). Antagonistic Toxic Effects of Surfactants Mixtures to Bacteria Pseudomonas putida and Marine Microalgae Phaeodactylum tricornutum. Toxics, 11(4). https://doi.org/10.3390/toxics11040344
Sátiro, J., Cunha, A., Gomes, A. P., Simões, R., & Albuquerque, A. (2022). Optimization of Microalgae–Bacteria Consortium in the Treatment of Paper Pulp Wastewater. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12125799
Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164
Silva, S. C., Ferreira, I. C. F. R., Dias, M. M., & Barreiro, M. F. (2020). Review and Industry and Market Trend Analysis. Molecules, 25(3406), 1–23.
Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I., & Bux, F. (2016). Trends and novel strategies for enhancing lipid ac-cumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 55, 1–16. https://doi.org/10.1016/j.rser.2015.11.001
Uggetti, E., Sialve, B., Latrille, E., & Steyer, J. P. (2014). Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437–443. https://doi.org/10.1016/j.biortech.2013.11.036
Verasoundarapandian, G., Lim, Z. S., Radziff, S. B. M., Taufik, S. H., Puasa, N. A., Shaharuddin, N. A., Merican, F., Wong, C. Y., Lalung, J., & Ahmad, S. A. (2022). Remediation of Pesticides by Microalgae as Feasible Approach in Agriculture: Bibliometric Strategies. Agronomy, 12(1). https://doi.org/10.3390/agronomy12010117
Wang, Y., Ho, S. H., Cheng, C. L., Guo, W. Q., Nagarajan, D., Ren, N. Q., Lee, D. J., & Chang, J. S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485–497. https://doi.org/10.1016/j.biortech.2016.09.106
Zhuang, Y., Su, Q., Wang, H., Wu, C., Tong, S., Zhang, J., & Qiao, H. (2023). Strain Screening and Conditions Optimization in Microalgae-Based Monosodium Glutamate Wastewater (MSGW) Treatment. Water (Switzerland), 15(9). https://doi.org/10.3390/w15091663
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2024 Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are the sole responsibility of the individual authors and contributors and not SAV and/or the publisher(s) disclaim all liability for personal injury or property damage resulting from ideas, methods, instructions or products referred to in the content.
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Scientia Agricolis Vita is published under a Creative Commons Attribution-NonComercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) licence.