Posibles aplicaciones de los consorcios de bacterias de microalgas para el tratamiento de residuos y bioproductos valiosos

Autores/as

  • Celestino García-Gómez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/agricolis.v1i1.6

Palabras clave:

microalgas, bacterias, bioproductos valiosos

Resumen

: La aplicación de microalgas y bacterias en el tratamiento de aguas residuales ha despertado interés debido a la mayor adaptabilidad y estabilidad ambiental resultante de sus interacciones, superando las obtenidas con microalgas a las de sostenibilidad y competitividad económica. Este manuscrito pretende apoyar la literatura existente y relevante sobre el uso de microalgas y bacterias. Como resultado, numerosos estudiosos y autores han hecho hincapié en las investigaciones recientes sobre la biotecnología de algas y bacterias, por lo que esta revisión será útil para avanzar y facilitar el desarrollo tecnológico de los procesos biológicos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Celestino García-Gómez , Universidad Autónoma de Nuevo León

Profesor de la Facultad de Agronomía

Citas

Dular, M., Griessler-Bulc, T., Gutierrez-Aguirre, I., Heath, E., Kosjek, T., Krivograd Klemenčič, A., Oder, M., Petkovšek, M., Rački, N., Ravnikar, M., Šarc, A., Širok, B., Zupanc, M., Žitnik, M., & Kompare, B. (2016). Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry, 29, 577–588. https://doi.org/10.1016/j.ultsonch.2015.10.010

Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Mu, J., Liu, M., & Cui, W. (2016). Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. Journal of Chemical Technology and Biotechnology, 91(10), 2713–2719. https://doi.org/10.1002/jctb.4879

Goh, P. S., Lau, W. J., Ismail, A. F., Samawati, Z., Liang, Y. Y., & Kanakaraju, D. (2023). Microalgae-Enabled Wastewater Treatment: A Sustainable Strategy for Bioremediation of Pesticides. Water (Switzerland), 15(1). https://doi.org/10.3390/w15010070

Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2016). A review on the use of microalgal consortia for wastewater treatment. ALGAL. https://doi.org/10.1016/j.algal.2016.11.008

Hena, S., Gutierrez, L., & Croué, J. P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials, 403(June 2020). https://doi.org/10.1016/j.jhazmat.2020.124041

Ishizaki, R., Noguchi, R., Putra, A. S., Ichikawa, S., Ahamed, T., & Watanabe, M. M. (2020). Reduction in energy requirement and CO2 emission for microalgae oil production using wastewater. Energies, 13(7). https://doi.org/10.3390/en13071641

Khan, S., Thaher, M., Abdulquadir, M., Faisal, M., Mehariya, S., Al-Najjar, M. A. A., Al-Jabri, H., & Das, P. (2023). Utilization of Microalgae for Urban Wastewater Treatment and Valorization of Treated Wastewater and Biomass for Biofertilizer Appli-cations. Sustainability, 15(22), 16019. https://doi.org/10.3390/su152216019

La Bella, E., Baglieri, A., Fragalà, F., & Puglisi, I. (2022). Multipurpose Agricultural Reuse of Microalgae Biomasses Employed for the Treatment of Urban Wastewater. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020234

Lauritano, C., Rizzo, C., Giudice, A. Lo, & Saggiomo, M. (2020). Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms, 8(12), 1–30. https://doi.org/10.3390/microorganisms8121957

Lee, C. S., Lee, S. A., Ko, S. R., Oh, H. M., & Ahn, C. Y. (2015). Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. In Water Research (Vol. 68). https://doi.org/10.1016/j.watres.2014.10.029

Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H. Q., Muñoz, R., & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127–1137. https://doi.org/10.1016/j.biortech.2017.06.054

Mhedhbi, E., Khelifi, N., Foladori, P., & Smaali, I. (2020). Real-Time behavior of a microalgae-bacteria consortium treating wastewater in a sequencing batch reactor in response to feeding time and agitation mode. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071893

Microalgae, W. U. (2024). Wastewater Using Microalgae.

Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004

Ríos, F., Lechuga, M., Lobato-Guarnido, I., & Fernández-Serrano, M. (2023). Antagonistic Toxic Effects of Surfactants Mixtures to Bacteria Pseudomonas putida and Marine Microalgae Phaeodactylum tricornutum. Toxics, 11(4). https://doi.org/10.3390/toxics11040344

Sátiro, J., Cunha, A., Gomes, A. P., Simões, R., & Albuquerque, A. (2022). Optimization of Microalgae–Bacteria Consortium in the Treatment of Paper Pulp Wastewater. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12125799

Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164

Silva, S. C., Ferreira, I. C. F. R., Dias, M. M., & Barreiro, M. F. (2020). Review and Industry and Market Trend Analysis. Molecules, 25(3406), 1–23.

Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I., & Bux, F. (2016). Trends and novel strategies for enhancing lipid ac-cumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 55, 1–16. https://doi.org/10.1016/j.rser.2015.11.001

Uggetti, E., Sialve, B., Latrille, E., & Steyer, J. P. (2014). Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437–443. https://doi.org/10.1016/j.biortech.2013.11.036

Verasoundarapandian, G., Lim, Z. S., Radziff, S. B. M., Taufik, S. H., Puasa, N. A., Shaharuddin, N. A., Merican, F., Wong, C. Y., Lalung, J., & Ahmad, S. A. (2022). Remediation of Pesticides by Microalgae as Feasible Approach in Agriculture: Bibliometric Strategies. Agronomy, 12(1). https://doi.org/10.3390/agronomy12010117

Wang, Y., Ho, S. H., Cheng, C. L., Guo, W. Q., Nagarajan, D., Ren, N. Q., Lee, D. J., & Chang, J. S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485–497. https://doi.org/10.1016/j.biortech.2016.09.106

Zhuang, Y., Su, Q., Wang, H., Wu, C., Tong, S., Zhang, J., & Qiao, H. (2023). Strain Screening and Conditions Optimization in Microalgae-Based Monosodium Glutamate Wastewater (MSGW) Treatment. Water (Switzerland), 15(9). https://doi.org/10.3390/w15091663

Descargas

Publicado

2024-01-30

Cómo citar

García-Gómez , C. (2024) «Posibles aplicaciones de los consorcios de bacterias de microalgas para el tratamiento de residuos y bioproductos valiosos», Scientia Agricolis Vita, 1(1), pp. 20–28. doi: 10.29105/agricolis.v1i1.6.

Número

Sección

Artículos

Categorías