Cannabinoides y su nanoencapsulamiento para mejorar sus propiedades terapéuticas en padecimientos intestinales
DOI:
https://doi.org/10.29105/agricolis.v1i2.12Palabras clave:
cannabis, fitocannabinoides, endocannabinoidoma, Sistema endocannabinoide, nanotecnología, nanopartículasResumen
La planta de cannabis ha generado interés y controversia por sus diversos usos entre los que se destacan los usos medicinales. Cultivada por miles de años y distribuida globalmente, esta planta produce diversas sustancias de interés medicinal, como los fitocannabinoides, que interactúan con el sistema endocannabinoide (SEC) y la endocannabinoidoma (eCBoma) en animales. Estos sistemas están activos tanto en individuos sanos como en diversas patologías, juegan roles cruciales en la homeostasis intestinal y condicionan procesos inflamatorios. Los cannabinoides terapéuticos, conocidos por sus propiedades antiinflamatorias, enfrentan diversas limitaciones como baja solubilidad y biodisponibilidad por algunas vías de administración, además de ser vulnerables a factores ambientales y fisiológicos. La nanotecnología emerge como una solución prometedora para superar estos obstáculos en la medicina herbal. Diversas metodologías han sido desarrolladas para crear sistemas de nanoentrega, como nanopartículas poliméricas, mejorando las propiedades fisicoquímicas y el potencial terapéutico de los cannabinoides. Los avances en el nanoencapsulamiento han mostrado resultados positivos, potenciando la efectividad de los fitocannabinoides en aplicaciones médicas.
Descargas
Citas
Al-Khazaleh, A.K., Jaye, K., Chang, D., Münch, G.W., Bhuyan, D.J., 2024. Buds and Bugs: A Fascinating Tale of Gut Microbiota and Cannabis in the Fight against Cancer. Int. J. Mol. Sci. 25. https://doi.org/10.3390/ijms25020872
Alaimo, A., Rubert, J., 2019. The pivotal role of TRP channels in homeostasis and diseases throughout the gastrointestinal tract. Int. J. Mol. Sci. 20. https://doi.org/10.3390/ijms20215277
Allouche, J., 2013. Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods, in: Brayner, R., Fiévet, F., Coradin, T. (Eds.), Nanomaterials: A Danger or a Promise? Springer London, London, pp. 27–74. https://doi.org/10.1007/978-1-4471-4213-3_2
Assadpour, E., Rezaei, A., Das, S.S., Krishna Rao, B.V., Singh, S.K., Kharazmi, M.S., Jha, N.K., Jha, S.K., Prieto, M.A., Jafari, S.M., 2023. Cannabidiol-Loaded Nanocarriers and Their Therapeutic Applications. Pharmaceuticals 16, 487. https://doi.org/10.3390/ph16040487
Bougarne, N., Weyers, B., Desmet, S.J., Deckers, J., Ray, D.W., Staels, B., De Bosscher, K., 2018. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 39, 760–802. https://doi.org/10.1210/er.2018-00064
D’Aniello, E., Fellous, T., Iannotti, F.A., Gentile, A., Allarà, M., Balestrieri, F., Gray, R., Amodeo, P., Vitale, R.M., Di Marzo, V., 2019. Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim. Biophys. Acta - Gen. Subj. 1863, 586–597. https://doi.org/10.1016/j.bbagen.2019.01.002
Dewi, M.K., Chaerunisaa, A.Y., Muhaimin, M., Joni, I.M., 2022. Improved Activity of Herbal Medicines through Nanotechnology. Nanomaterials 12. https://doi.org/10.3390/nano12224073
Di Marzo, V., Piscitelli, F., 2015. The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics 12, 692–698. https://doi.org/10.1007/s13311-015-0374-6
ElSohly, M.A., Radwan, M.M., Gul, W., Chandra, S., Galal, A., 2017. Phytochemistry of Cannabis sativa L., in: Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis Sativa. Progress in the Chemistry of Organic Natural Products, Cham, pp. 1–36. https://doi.org/10.1007/978-3-319-45541-9_1
Eltantawy, N., El-Zayyadi, I.A.E.H., Elberry, A.A., Salah, L.M., Abdelrahim, M.E.A., Kassem, A.B., 2023. A review article of inflammatory bowel disease treatment and pharmacogenomics. Beni-Suef Univ. J. Basic Appl. Sci. 12. https://doi.org/10.1186/s43088-023-00361-0
Gülck, T., Møller, B.L., 2020. Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci. 25, 985–1004. https://doi.org/10.1016/j.tplants.2020.05.005
Hourfane, S., Mechqoq, H., Bekkali, A.Y., Rocha, J.M., El Aouad, N., 2023. A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants 12, 1–43. https://doi.org/10.3390/plants12061245
Khoury, M., Cohen, I., Bar-Sela, G., 2022. “The Two Sides of the Same Coin”—Medical Cannabis, Cannabinoids and Immunity: Pros and Cons Explained. Pharmaceutics 14, 389. https://doi.org/10.3390/pharmaceutics14020389
Klumpers, L.E., Thacker, D.L., 2019. A brief background on cannabis: From plant to medical indications. J. AOAC Int. 102, 412–420. https://doi.org/10.5740/jaoacint.18-0208
Lago-Fernandez, A., Zarzo-Arias, S., Jagerovic, N., Morales, P., 2021. Relevance of peroxisome proliferator activated receptors in multitarget paradigm associated with the endocannabinoid system. Int. J. Mol. Sci. 22, 1–28. https://doi.org/10.3390/ijms22031001
Liu, Y., Yang, G., Zou, D., Hui, Y., Nigam, K., Middelberg, A.P.J., Zhao, C.-X., 2020. Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Ind. Eng. Chem. Res. 59, 4134–4149. https://doi.org/10.1021/acs.iecr.9b04747
Martínez, V., Iriondo De-Hond, A., Borrelli, F., Capasso, R., Del Castillo, M.D., Abalo, R., 2020. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: Useful nutraceuticals? Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21093067
Mir, H.-D., Giorgini, G., Di Marzo, V., 2023. The emerging role of the endocannabinoidome-gut microbiome axis in eating disorders. Psychoneuroendocrinology 154, 106295. https://doi.org/10.1016/j.psyneuen.2023.106295
Moiseenkova-Bell, V., Wensel, T.G., 2011. Functional and Structural Studies of TRP Channels Heterologously Expressed in Budding Yeast, in: Advances in Experimental Medicine and Biology. pp. 25–40. https://doi.org/10.1007/978-94-007-0265-3_2
Montagner, A., Rando, G., Degueurce, G., Leuenberger, N., Michalik, L., Wahli, W., 2011. New insights into the role of PPARs. Prostaglandins Leukot. Essent. Fat. Acids 85, 235–243. https://doi.org/10.1016/j.plefa.2011.04.016
Morales, P., Hurst, D.P., Reggio, P.H., 2017. Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog. Chem. Org. Nat. Prod. https://doi.org/10.1007/978-3-319-45541-9_4
Muller, C., Morales, P., Reggio, P.H., 2019. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci. 11, 1–15. https://doi.org/10.3389/fnmol.2018.00487
Nichols, J.M., Kaplan, B.L.F., 2020. Immune Responses Regulated by Cannabidiol. Cannabis Cannabinoid Res. https://doi.org/10.1089/can.2018.0073
Patra, J.K., Das, G., Fraceto, L.F., Vangelie, E., Campos, R., Rodriguez, P., Susana, L., Torres, A., Armando, L., Torres, D., Grillo, R., 2018. Nano based drug delivery systems : recent developments and future prospects. J. Nanobiotechnology 1–33. https://doi.org/10.1186/s12951-018-0392-8
Peters, J.M., Shah, Y.M., Gonzalez, F.J., 2012. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer 12, 181–195. https://doi.org/10.1038/nrc3214
Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sánchez-Martinez, H., Gonzalez-Granado, J.M., 2023. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int. J. Mol. Sci. 24. https://doi.org/10.3390/ijms24021526
Schiano Moriello, A., Di Marzo, V., Petrosino, S., 2022. Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals 12, 348. https://doi.org/10.3390/ani12030348
Semwal, R., Semwal, R.B., Semwal, D.K., 2015. Drug Delivery Systems: Selection Criteria and Use, in: Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis, pp. 2938–2949. https://doi.org/10.1081/E-EBPP-120050409
Sharma, A., Madhunapantula, S. V., Robertson, G.P., 2012. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin. Drug Metab. Toxicol. 8, 47–69. https://doi.org/10.1517/17425255.2012.637916
Silvestri, C., Di Marzo, V., 2023. The Gut Microbiome–Endocannabinoidome Axis: A New Way of Controlling Metabolism, Inflammation, and Behavior. Function 4, 5–7. https://doi.org/10.1093/function/zqad003
Srivastava, R.K., Lutz, B., Ruiz de Azua, I., 2022. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front. Cell. Neurosci. 16. https://doi.org/10.3389/fncel.2022.867267
Tanasescu, R., Constantinescu, C.S., 2010. Cannabinoids and the immune system: An overview. Immunobiology 215, 588–597. https://doi.org/10.1016/j.imbio.2009.12.005
Turner, S.E., Williams, C.M., Iversen, L., Whalley, B.J., 2017a. Molecular Pharmacology of Phytocannabinoids, Spanier. ed, Progress in the chemistry of organic natural products. Progress in the Chemistry of Organic Natural Products, Cham. https://doi.org/10.1007/978-3-319-45541-9_3
Turner, S.E., Williams, C.M., Iversen, L., Whalley, B.J., 2017b. Molecular Pharmacology of Phytocannabinoids, in: Scientific Reports. pp. 61–101. https://doi.org/10.1007/978-3-319-45541-9_3
Turner, S.E., Williams, C.M., Iversen, L., Whalley, B.J., 2017c. Molecular Pharmacology of Phytocannabinoids, Progress in the chemistry of organic natural products. https://doi.org/10.1007/978-3-319-45541-9_3
Vanti, G., 2021. Recent strategies in nanodelivery systems for natural products: a review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-021-01276-x
Varsha, K.K., Nagarkatti, M., Nagarkatti, P., 2022. Role of Gut Microbiota in Cannabinoid-Mediated Suppression of Inflammation. Adv. Drug Alcohol Res. 2, 1–10. https://doi.org/10.3389/adar.2022.10550
Vetter, I., Lewis, R.J., 2011. Natural Product Ligands of TRP Channels BT - Transient Receptor Potential Channels.
Wang, Y., Li, P., Tran, T.T.D., Zhang, J., Kong, L., 2016. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 6, 1–18. https://doi.org/10.3390/nano6020026
Zielińska, A., Carreiró, F., Oliveira, A.M., Neves, A., Pires, B., Venkatesh, D.N., Durazzo, A., Lucarini, M., Eder, P., Silva, A.M., Santini, A., Souto, E.B., 2020. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 25, 3731. https://doi.org/10.3390/molecules25163731
Libro
Brown, J. E. (2010). Nutrition Now. 6th. ed. Thomson Wadsworth. Belmont, CA.
Capítulo de Libro
Roca, P., Oliver, J., Rodríguez, A.M. (2003). Seguridad y riesgos en bioquímica: técnicas y métodos. Hélice, Madrid, pp 30-40.
Artículo de revista de edición periódica
Allan, T., Keulertz, M, y Woertz, E. (2015). The wáter-food-energy nexus: an introduction a to nexus concepts and some conceptual and operational problems. International Journal of Water Resources Development. 31 (3): pp 301-311. doi: 10.1080/07900627.2015.1029118.
Boletín
GAO. 1994. Food safety. Risk-based inspections and microbial monitoring needed for meat and poultry. Rept. GAO/RCED 94-110. General Accounting Office. Washington, D.C.
Patentes
Nestec S.A., (2011). Dispositivo de control de una válvula peristáltica para una máquina de preparación de bebidas. Inventores: Denisat., J, L., Bonacci, E., Denisart, J. P., Pliesh, H. y Talón, C. 28 de octubre. Depositada: 7 de mayo de 2008. Patente española: ES2367085T3.
Tesis/Disertación
López García, J. (2001). Una Aportación a la Aritmética Computacional mediante Lógica Umbral (CD- ROM). Tesis Doctoral. Universidad de Málaga. Málaga, España.
Páginas WEB
Centre of Academic Writing (2006). The List of References Ilustrated. [Consultado el 7 de mayo de 2012]. Disponible en: http://home.ched.coventryac.uk/caw/harvard/index.htm.
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2024 Dr, Dr, Dr, Dra, PhD, Uziel Castillo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Scientia Agricolis Vita is published under a Creative Commons Attribution-NonComercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) licence.