Actividad Antiparasitaria In-vitro del Extracto Metanólico de Kalanchoe daigremontiana (Crassulaceae) en Contra de Entamoeba histolytica (Amoebida: Entamoebidae) y Trichomonas vaginalis (Trichomonadida: Trichomonadidae)
DOI:
https://doi.org/10.29105/agricolis.v1i1.3Palabras clave:
Amebosis, Hemolisis, Parasitosis, Tricomonosis, TrofozoítosResumen
Las infecciones parasitarias como la amebosis y la tricomonosis representan un desafío significativo para la salud pública a nivel global. A lo largo de décadas, el metronidazol ha sido considerado como el fármaco principal para su tratamiento. Sin embargo, el uso descontrolado de este medicamento ha propiciado la aparición de cepas resistentes. Esta realidad ha generado una urgente necesidad de descubrir y desarrollar nuevos tratamientos eficaces contra las parasitosis. Objetivo: Evaluar la actividad antiparasitaria de Kalanchoe daigremontiana sobre Entamoeba histolytica y Trichomonas vaginalis. Metodología: Se preparó un extracto metanólico de K. daigremontiana. El extracto se caracterizó fitoquímicamente de manera cualitativa. Se determinó el efecto del extracto sobre trofozoítos de E. histolytica y T. vaginalis; finalmente se determinó su toxicidad en eritrocitos humanos. Resultados: El análisis fitoquímico del extracto de K. daigremontiana indicó que los flavonoides son los compuestos más abundantes. El extracto presentó la capacidad de inhibir el desarrollo de E. histolytica y T. vaginalis con una DL50 de 71 y 105 μg/mL, respectivamente y presento baja toxicidad en eritrocitos. Conclusiones: El extracto de metanolico de las hojas de K. daigremontiana posee actividad en contra de E. histolytica y T. vaginalis. Sin afectar significativamente los hematíes humanos en concentraciones efectivas frente a los parásitos evaluados.
Descargas
Citas
El Abdellaoui, S. et al. (2010) ‘Bioactive molecules in Kalanchoe pinnata leaves: extraction, purification, and identification’, Analytical and Bioanalytical Chemistry, 398(3), pp. 1329–1338. doi: 10.1007/s00216-010-4047-3.
Aisyah, L. S. et al. (2016) ‘Flavonoid Compounds From The Leaves Of Kalanchoe Tomentosa And Their Cytotoxic Activity Against P-388 Murine Leukemia Cell’, Akta Kimia Indonesia, 1(1), p. 1. doi: 10.12962/j25493736.v1i1.1413.
Alam, M. N., Bristi, N. J. and Rafiquzzaman, M. (2013) ‘Review on in vivo and in vitro methods evaluation of antioxidant activity’, Saudi Pharmaceutical Journal, 21(2), pp. 143–152. doi: 10.1016/j.jsps.2012.05.002.
Bazaldúa-Rodríguez, A. F. et al. (2021) ‘Furanocoumarins from Ruta chalepensis with Amebicide Activity’, Molecules, 26(12), p. 3684. doi: 10.3390/molecules26123684.
Boyko, O. O., Kabar, A. M. and Brygadyrenko, V. V. (2020) ‘Nematicidal activity of aqueous tinctures of medicinal plants against larvae of the nematodes Strongyloides papillosus and Haemonchus contortus’, Biosystems Diversity, 28(1), pp. 119–123. doi: 10.15421/012016.
Chaudhuri, S. et al. (2007) ‘Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects’, International Journal of Biological Macromolecules. Elsevier, 41(1), pp. 42–48. doi: 10.1016/j.ijbiomac.2006.12.003.
Chisté, R. C. et al. (2014) ‘Carotenoids inhibit lipid peroxidation and hemoglobin oxidation, but not the depletion of gluta-thione induced by ROS in human erythrocytes’, Life Sciences. Pergamon, 99(1–2), pp. 52–60. doi: 10.1016/J.LFS.2014.01.059.
Costa, S. S. et al. (2008) ‘Therapeutic potential of Kalanchoe species: Flavonoids and other secondary metabolites’, Natural Product Communications, 3(12), pp. 2151–2164. doi: 10.1177/1934578x0800301236.
Dingsdag, S. A. and Hunter, N. (2018) ‘Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms’, The Journal of antimicrobial chemotherapy, 73(2), pp. 265–279. doi: 10.1093/jac/dkx351.
Edwards, T. et al. (2014) ‘Trichomonas vaginalis : Clinical relevance, pathogenicity and diagnosis’, Critical Reviews in Mi-crobiology, 42(3), pp. 1–12. doi: 10.3109/1040841X.2014.958050.
Elizondo-Luevano, J. H. et al. (2020) ‘In Vitro Effect of Methanolic Extract of Argemone mexicana against Trichomonas vaginalis.’, The Korean journal of parasitology. The Korean Society for Parasitology and Tropical Medicine, 58(2), pp. 135–145. doi: 10.3347/kjp.2020.58.2.135.
Elizondo-Luevano, J. H. et al. (2023) ‘Influence of the Polymer and Solvent Variables on the Nanoencapsulation of the Fla-vonoid Quercetin: Preliminary Study Based on Eudragit® Polymers’, Applied Sciences, 13(13), p. 7816. doi: 10.3390/app13137816.
Elizondo-Luévano, J. H. et al. (2020) ‘Berberina, curcumina y quercetina como potenciales agentes con capacidad antiparasi-taria’, Revista de Biología Tropical, 68(4), pp. 1241–1249. doi: 10.15517/rbt.v68i4.42094.
Elizondo-Luévano, J. H. et al. (2021) ‘In-Vitro Effect of Kalanchoe daigremontiana and Its Main Component, Quercetin against Entamoeba histolytica and Trichomonas vaginalis’, Iranian Journal of Parasitology, 16(3), pp. 394–401. doi: 10.18502/ijpa.v16i3.7092.
Escalada, G., Brumovsky, L. A. and Hartwig, V. G. (2011) ‘Influencia de la zona de cultivo y procesamiento de la yerba mate sobre su contenido de polifenoles totales y capacidad antioxidante effects of growing and processing location on polyphenol content and antioxidant capacity of yerba mate (ilex paraguariens’, Revista De Ciencia Y Tecnología, 15(1), pp. 66–74. Available at: https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/498.
Fürer, K. et al. (2016) ‘Bryophyllum pinnatum and Related Species Used in Anthroposophic Medicine: Constituents, Phar-macological Activities, and Clinical Efficacy’, Planta Medica, 82(11/12), pp. 930–941. doi: 10.1055/s-0042-106727.
Halliwell, B. and Gutteridge, J. M. C. (1990) ‘[1] Role of free radicals and catalytic metal ions in human disease: An overview’, Methods in Enzymology. Academic Press, 186, pp. 1–85. doi: 10.1016/0076-6879(90)86093-B.
Hernández Ceruelos, A. et al. (2019) ‘Therapeutic uses of metronidazole and its side effects: an update.’, European review for medical and pharmacological sciences, 23(1), pp. 397–401. doi: 10.26355/eurrev_201901_16788.
James, S. L. et al. (2018) ‘Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017’, The Lancet, 392(10159), pp. 1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
Kolodziejczyk-Czepas, J. and Stochmal, A. (2017) ‘Bufadienolides of Kalanchoe species: an overview of chemical structure, biological activity and prospects for pharmacological use’, Phytochemistry Reviews. Springer Netherlands, 16(6), pp. 1155–1171. doi: 10.1007/s11101-017-9525-1.
López-Villarreal, S. M. et al. (2022) ‘Preliminary Study of the Antimicrobial, Anticoagulant, Antioxidant, Cytotoxic, and Anti-Inflammatory Activity of Five Selected Plants with Therapeutic Application in Dentistry.’, International journal of en-vironmental research and public health, 19(13), p. 7927. doi: 10.3390/ijerph19137927.
Mehriardestani, M. et al. (2017) ‘Medicinal plants and their isolated compounds showing anti-Trichomonas vaginalis- activity’, Biomedicine and Pharmacotherapy. Elsevier Masson SAS, 88, pp. 885–893. doi: 10.1016/j.biopha.2017.01.149.
Mitra, A. and Mawson, A. (2017) ‘Neglected Tropical Diseases: Epidemiology and Global Burden’, Tropical Medicine and Infectious Disease, 2(3), p. 36. doi: 10.3390/tropicalmed2030036.
Muzitano, M. F. et al. (2006) ‘Quercitrin: An antileishmanial flavonoid glycoside from Kalanchoe pinnata’, Planta Medica, 72(1), pp. 81–83. doi: 10.1055/s-2005-873183.
Pal, D. et al. (2009) ‘Giardia , Entamoeba , and Trichomonas Enzymes Activate Metronidazole (Nitroreductases) and Inactivate Metronidazole (Nitroimidazole Reductases)’, Antimicrobial Agents and Chemotherapy, 53(2), pp. 458–464. doi: 10.1128/AAC.00909-08.
Patel, B., Patel, P. and Patel, R. (2011) ‘Effect of different extracts from Celosia argentea on calcium and phosphate inhibition in vitro’, International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), pp. 337–339.
Pieroni, L. G. et al. (2011) ‘Antioxidant activity and total phenols from the methanolic extract of miconia albicans (Sw.) triana leaves’, Molecules, 16(11), pp. 9439–9450. doi: 10.3390/molecules16119439.
Pires-Santos, G. M., Santana-Anjos, K. G. and Vannier-Santos, M. A. (2012) ‘Optimization of Entamoeba histolytica culturing in vitro.’, Experimental parasitology. Elsevier Inc., 132(4), pp. 561–565. doi: 10.1016/j.exppara.2012.09.011.
Pozio, E. (2019) ‘How globalization and climate change could affect foodborne parasites’, Experimental Parasitology. Aca-demic Press, p. 107807. doi: 10.1016/J.EXPPARA.2019.107807.
Quintanilla-Licea, R. et al. (2023) ‘Actividad citotóxica, antioxidante y antihemolítica del extracto metanólico de Cymbopogon citratus (DC.) Stapf’, Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 8(1), pp. 957–964. doi: 10.29105/idcyta.v8i1.121.
Rodríguez-Garza, N. E. et al. (2019) ‘Evaluación in vitro de extractos de plantas medicinales contra Trypanosoma cruzi, agente causal de la enfermedad de Chagas’, Revista Tendencias en Docencia e Investigación en Química, 5(5), pp. 677–685. Available at: http://zaloamati.azc.uam.mx/bitstream/handle/11191/7893/Evaluacion_in_vitro_de_extractos_de_plantas_medicinales_2019.pdf?sequence=1.
Rodríguez-Garza, N. E. et al. (2023) ‘In Vitro Biological Activity and Lymphoma Cell Growth Inhibition by Selected Mexican Medicinal Plants’, Life, 13(4), p. 958. doi: 10.3390/life13040958.
Sandner, G., Heckmann, M. and Weghuber, J. (2020) ‘Immunomodulatory activities of selected essential oils’, Biomolecules, 10(8), pp. 1–16. doi: 10.3390/biom10081139.
Shiva Shankar Reddy, C. S. et al. (2007) ‘In vitro models of oxidative stress in rat erythrocytes: Effect of antioxidant supple-ments’, Toxicology in Vitro, pp. 1355–1364. doi: 10.1016/j.tiv.2007.06.010.
Tienda-Vázquez, M. A. et al. (2023) ‘Antidiabetic Plants for the Treatment of Type 2 Diabetes Mellitus and Associated Bacterial Infections’, Processes, 11(5), p. 1299. doi: 10.3390/pr11051299.
Trejos-Suárez, J. and Castaño-Osorio, J. C. (2009) ‘Factores de virulencia del patógeno intestinal Entamoeba histolytica’, Infectio. Elsevier, 13(2), pp. 100–110. doi: 10.1016/S0123-9392(09)70731-3.
Velázquez-Domínguez, J. et al. (2013) ‘Effect of the sesquiterpene lactone incomptine A in the energy metabolism of Entamoeba histolytica’, Experimental Parasitology, 135(3), pp. 503–510. doi: 10.1016/j.exppara.2013.08.015.
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2024 Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are the sole responsibility of the individual authors and contributors and not SAV and/or the publisher(s) disclaim all liability for personal injury or property damage resulting from ideas, methods, instructions or products referred to in the content.
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Scientia Agricolis Vita is published under a Creative Commons Attribution-NonComercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) licence.