Effect of agricultural production system on soil microbial pop-ulations
DOI:
https://doi.org/10.29105/agricolis.v1i1.7Keywords:
Agricultural machinery, fertilizer, microbiological, physicochemical, tillageAbstract
This document presents the partial results of the physicochemical and microbiological characterization of the soil from samples taken at 15 and 45 cm depth prior to the establishment of the different tillage and fertilizer treatments. Concerning the values observed in the physical and chemical parameters, no statistically significant differences (p > 0.05) were observed between samples from both depths. The microbiological analysis was conducted with soil samples taken at 15 cm depth from three tillage systems, considering the control treatment and the treatment with organic fertilization with poultry manure. Aerobic bacteria and actinomycetes counts did not show statistically significant differences (p > 0.05). Anaerobic, coliform, and fungal counts were statistically different (p > 0.05) between treatments due to the presence of organic fertilizer. However, no statistically significant difference (p > 0.05) was observed between the three tillage systems. In a second culture cycle, the effect of different concentrations of organic matter was evaluated, where T1(N: 60, P: 65.5, K: 74.4) showed the higher CFU g-1 (Log) of aerobic and anaerobic bacteria, actinomycetes, and fungi, while T3 had the highest CFU of coliforms. These results are important to understand soil dynamics better and inform agricultural and soil management practices. In addition, they highlight the importance of proper use of organic fertilizers and the need for further research to determine how they affect long-term soil health and quality.
Downloads
References
AbdElgawad, H., Abuelsoud, W., Madany, M. M., Selim, S., Zinta, G., Mousa, A. S., & Hozzein, W. N. (2020). Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules, 10(12), 1675. 10.3390/biom10121675
Alori, E. T., Adekiya, A. O., Adegbite, K. A. (2020). Impact of agricultural practices on soil health. Soil Health, 89-98. doi: 10.1007/978-3-030-44364-1_5.
Álvarez Solís, J. D., and Anzueto Martínez, M. D. J. (2004). Soil microbial activity under different maize production systems in the highlands of Chiapas, Mexico. Agrociencia, 38(1).
Angon, P. B., Anjum, N., Akter, M., KC, S., Suma, R. P., Jannat, S. (2023). An Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices. Advances in Agriculture.doi: 10.1155/2023/8861216.
Aseeva, T. A., Selezneva, N. A., Sunyaikin, A. A., Tishkova, A. G., Afanasieva, E. G. (2021, March). Influence of anthropogenic activities on changes in the chemical and biological properties of the soil. In IOP Conference Series: Earth and Environmental Science (Vol. 723, No. 4, p. 042046). IOP Publishing. doi: 10.1088/1755-1315/723/4/042046.
Barros-Rodríguez, A., Rangseekaew, P., Lasudee, K., Pathom-Aree, W., Manzanera, M. (2021). Impacts of agriculture on the environment and soil microbial biodiversity. Plants, 10(11), 2325. doi: 10.3390/PLANTS10112325.
Behnke, G. D., Kim, N., Zabaloy, M. C., Riggins, C. W., Rodriguez-Zas, S., Villamil, M. B. (2021). Soil microbial indicators within rotations and tillage systems. Microorganisms, 9(6), 1244. doi: 10.3390/MICROORGANISMS9061244.
Beigmohammadi, F., Solgi, E., Lajayer, B. A., & van Hullebusch, E. D. (2023). Role and importance of microorganisms in plant nutrition and remediation of potentially toxic elements contaminated soils. In Sustainable Plant Nutrition (pp. 179-208). Academic Press. doi: 10.1016/B978-0-443-18675-2.00012-2
Burcea, M. (2018). Anthropic impact studies on the agrochemical quality condition of the soil. Scientific Papers Se-ries-Management, Economic Engineering in Agriculture and Rural Development, 18(1), 109-113.
Corwin, D. L., Kaffka, S. R., Hopmans, J. W., Mori, Y., Van Groenigen, J. W., Van Kessel, C., ... & Oster, J. D. (2003). Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma, 114(3-4), 231-259. doi:10.1016/S0016-7061(03)00043-0.
Crecchio, C., Gelsominob, A., Ambrosoli, R., Minati, J. L., and Ruggiero, P. (2004). Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biology and Biochemistry, 36, 1873-1883. doi: 10.1016/j.soilbio.2004.05.008.
da Costa Freire, M. H., de Sousa, G. G., de Araújo Viana, T. V., Lessa, C. I. N., & Costa, F. H. R. (2023). Soil chemical attributes under combinations of organic fertilizing and water salinity. Agricultural Research in the Tropics/Pesquisa Agropecuária Tropical, 53. 10.1590/1983-40632023v5375156
Dong, Y., Zhang, J., Chen, R., Zhong, L., Lin, X., & Feng, Y. (2022). Microbial community composition and activity in saline soils of coastal agro–ecosystems. Microorganisms, 10(4), 835. doi.org/10.3390/microorganisms10040835
Escoto González, J. (2014). Effect of biofertilizers and organic products on the production of nopal verdura (Doctoral disser-tation, Universidad Autónoma de Nuevo León).
Galic, M., Bilandzija, D., Percin, A., Sestak, I., Mesic, M., Blazinkov, M., Zgorelec, Z. (2019). Effects of agricultural practices on carbon emission and soil health. Journal of Sustainable Development of Energy, Water and Environment Systems, 7(3), 539-552. doi: 10.13044/J.SDEWES.D7.0271.
Halter, M., Vaisvil, B., Kapatral, V., Zahn, J. (2020). Organic farming practices utilizing spent microbial biomass from an industrial fermentation facility promote transition to copiotrophic soil communities. Journal of Industrial Microbiology & Biotechnology: Official Journal of the Society for Industrial Microbiology and Biotechnology, 47(11), 1005-1018. doi: 10.1007/S10295-020-02318-Z.
Jain, R., Saxena, J. (2019). Impact assessment of microbial formulations in agricultural soil. Microbial Interventions in Agri-culture and Environment: Volume 2: Rhizosphere, Microbiome and Agro-ecology, 471-495. doi: 10.1007/978-981-13-8383-0_16.
Kaur, A., & Rani, R. (2022). 1 Role of Soil Microorganisms in Sustainable Crop Production. Microbial Based Land Restoration Handbook, Volume 2: Soil and Plant Health Development. doi:10.1201/9781003147077-1
Khmelevtsova, L. E., Sazykin, I. S., Azhogina, T. N., Sazykina, M. A. (2022). Influence of agricultural practices on bacterial community of cultivated soils. Agriculture, 12(3), 371. doi: 10.3390/agriculture12030371.
Li, X., Jiao, X., Wang, H., & Wang, G. (2021). Organic-inorganic combined fertilization alters reclaimed soil bacterial com-munities in an opencast coal mine area and improves soil quality. Arabian Journal of Geosciences, 14(13), 1234.
Mackay, J. E., Bernhardt, L. T., Smith, R. G., & Ernakovich, J. G. (2023). Tillage and pesticide seed treatments have distinct effects on soil microbial diversity and function. Soil Biology and Biochemistry, 176, 108860. doi: 10.1016/j.soilbio.2022.108860
Marois, J., Lerch, T. Z., Dunant, U., Farnet Da Silva, A. M., Christen, P. (2023). Chemical and microbial characterization of fermented forest litters used as biofertilizers. Microorganisms, 11(2), 306.doi:10.3390/microorganisms11020306
Nabi, M. (2023). Role of microorganisms in plant nutrition and soil health. In Sustainable Plant Nutrition (pp. 263-282). Academic Press. doi:10.1016/B978-0-443-18675-2.00016-X
Prisa, D. (2023). Role of microorganisms in communication between soil and plants. Karbala International Journal of Modern Science, 9(2), 1. doi:10.33640/2405-609X.3287
Shivlata, L., & Satyanarayana, T. (2017). Actinobacteria in agricultural and environmental sustainability. Agro-Environmental Sustainability: Volume 1: Managing Crop Health, 173-218. doi: 10.1007/978-3-319-49724-2_9
Tang, H., Li, C., Cheng, K., Wen, L., Shi, L., Li, W., Xiao, X. (2022). Impacts of short-term tillage and crop residue incorporation managements on soil microbial community in a double-cropping rice field. Scientific Reports, 12(1), 2093. doi: 10.1038/s41598-022-06219-2.
Vahith, R. A., & Sirajudeen, J. (2016). Quantitative determination of total and fecal coliforms in groundwater between Ta-milnadu and Pondicherry states, India. Journal of Environmental Science and Pollution Research, 2(1), 57-59.
Wanga, M., Chen, Y., Xia, X., Li, J., and Liu, J. (2014). Energy efficiency and environmental performance of bioethanol pro-duction from sweet sorghum stem based on life cycle analysis. Bioresource Technology 163, 74-81 10.1016/j.biortech.2014.04.014.
West, J. R., Lauer, J. G., Whitman, T. (2023). Tillage homogenizes soil bacterial communities in microaggregate fractions by facilitating dispersal. Soil Biology and Biochemistry, 186, 109181.doi: 10.1101/2023.03.08.531801
Zhang, H., Ding, W., He, X., Yu, H., Fan, J. y Liu, D. (2014). Influencia de la fertilización orgánica e inorgánica durante 20 años sobre la acumulación de carbono orgánico y la estructura de la comunidad microbiana de agregados en un suelo franco arenoso cultivado intensivamente. PLoS One, 9 (3), e92733. doi: 10.1371/JOURNAL.PONE.0092733
Zuo, W., Xu, L., Qiu, M., Yi, S., Wang, Y., Shen, C., ... & Bai, Y. (2022). Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil. Agronomy, 13(1), 61. doi: 10.3390/agronomy13010061
GAO. 1994. Food safety. Risk-based inspections and microbial monitoring needed for meat and poultry. Rept. GAO/RCED 94-110. General Accounting Office. Washington, D.C.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are the sole responsibility of the individual authors and contributors and not SAV and/or the publisher(s) disclaim all liability for personal injury or property damage resulting from ideas, methods, instructions or products referred to in the content.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Scientia Agricolis Vita is published under a Creative Commons Attribution-NonComercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) licence.