Aprovechamiento de residuos agroindustriales para la obtención de enzimas termoestables degradadoras de pared celular vegetal utilizando un co-cultivo de basidiomicetos

Autores/as

DOI:

https://doi.org/10.29105/agricolis.v1i2.18

Palabras clave:

bioeconomía circular, cáscaras de cítricos, valorización

Resumen

La producción enzimática de CMCasas, avicelasas, xilanasas, amilasas y lacasa un co-cultivo de Trametes maxima CU1 y Pycnoporus sanguineus CS2 fue evaluada en medios de cultivo sumergidos a base de residuos agroindustriales. Los resultados mostraron una sinergia en la producción de diversas enzimas, incluyendo CMCasas, avicelasas, xilanasas, amilasas y lacasas, cuando se utilizaron diferentes combinaciones de sustratos y suplementos. Si bien, se esperaba encontrar una solo condición para la máxima producción enzimática, en el tratamiento 4 se cuantificaron los mayores títulos de amilasas (445 Ul-1) y b-D-glicosidasa (1249 Ul-1).  Los mayores títulos de CMCasas (1983 Ul-1) se presentaron en el medio Tx 5, mientras que los máximos niveles de avicelasas se detectaron en en medio Tx1(890 Ul-1). En el tratamiento Tx8 se presentó la mejor producción de xilanasas (837 Ul-1).  Con respecto a la producción de lacasa, el mejor medio fue Tx9 con 142 Ul-1. Todas las hidrolasas mostraron una máxima actividad a 70 oC, que retienen a los 90 oC. Estos resultados nos permiten concluir que el co-cultivo de Trametes maxima CU1 y Pycnoporus sanguineus CS2 es una alternativa en la obtención de adyuvantes enzimáticos de bajo costo, con aplicaciones prometedoras en diversas industrias.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abadulla, E., Tzanov, T., Costa, S., Robra, K.H., Cavaco-Paulo, A. and Gübitz, G.M., 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol, 66, 3357-3362.

Abduh, M.Y., Ramadhan, C., Fadhlilah, A.P., Abdul, S.D., & Burhan, K.H. (2022). Solid-state fermentation of groundnut (Arachis hypogaea) shell using Trichoderma sp., tape yeast, and tempeh yeast to produce cellulase. Journal of Applied Biology & Biotechnology.Vol. 10(4), pp. 153-160. DOI: 10.7324/JABB.2022.100421.

Ado, B. V., Amande, T. J., Ebah, E. E., & Mabitine, D. M. (2018). Screening, production and partial characterization of a thermostable laccase from Trametes sp. isolate B7 with biotechnological potentials. Biotechnology Journal International, 22(4), 1-16.

Anh, H. T. H., Shahsavari, E., Bott, N. J., & Ball, A. S. (2021). Application of co-culture technology to enhance protease pro-duction by two halophilic bacteria, Marinirhabdus sp. and Marinobacter hydrocarbonoclasticus. Molecules, 26(11), 3141.

Asiegbu, F. O., Paterson, A., & Smith, J. E. (1996). The effects of co-fungal cultures and supplementation with carbohydrate adjuncts on lignin biodegradation and substrate digestibility. World Journal of Microbiology and Biotechnology, 12, 273-279.

Bader, J., Mast‐Gerlach, E., Popović, M. K., Bajpai, R., & Stahl, U. (2010). Relevance of microbial coculture fermentations in biotechnology. Journal of applied microbiology, 109(2), 371-387.

Baldrian, P. (2004). Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS microbiology ecolo-gy, 50(3), 245-253.

Borchers, S., Freund, S., Rath, A., Streif, S., Reichl, U., & Findeisen, R. (2013). Identification of growth phases and influenc-ing factors in cultivations with AGE1. HN cells using set-based methods. PLoS One, 8(8), e68124.

Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), 120-128.

da Silva, Y. H., de Oliveira, T. B., Lima, M. S., Pasin, T. M., de Almeida Scarcella, A. S., de Moraes, M. D. L. T., ... & de Lucas, R. C. (2022). Co-Culture of Trichoderma reesei, Talaromyces sp. and Aspergillus spp. Produces A Multi-Enzyme Cocktail for the Hydrolysis of Sugarcane Bagasse Pretreated with Piperonilic Acid (PIP) and Methylenedioxycinnamic Acid (MDCA).

Dullah, S., Hazarika, D. J., Parveen, A., Kakoti, M., Borgohain, T., Gautom, T., ... & Boro, R. C. (2021). Fungal interactions induce changes in hyphal morphology and enzyme production. Mycology, 12(4), 279-295.

Dwivedi Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), 120-128.

Fang, H., & Xia, L. (2013). High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Bioresource technology, 144, 693-697.

Gutiérrez Soto, J. G. (2009). Purificación y caracterización parcial de las lacasas de Trametes maxima CU1 y su aplicación en la de-gradación de colorantes textiles (Doctoral dissertation, Universidad Autónoma de Nuevo León).

Gutiérrez Soto, J. G., Medina González, G. E., García Zambrano, E. A., Treviño Ramírez, J. E., & Hernández Luna, C. E. (2015). Selection and characterization of a native Pycnoporus sanguineus strain as a lignocellulolytic extract producer from submerged cultures of various agroindustrial wastes. BioResources, 10(2).

Gutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología, 32(1), 1-12

Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the micro-bial jungle. Nature reviews microbiology, 8(1), 15-25.

Javed, M. M., & Khan, T. S. (2006). An innovative approach for hyperproduction of cellulolytic and hemicellulolytic enzymes by consortium of Aspergillus niger MSK-7 and Trichoderma viride MSK-10. African journal of Biotechnology, 5(8), 609-614.

Martínez, S. M. S., Gutiérrez-Soto, G., Garza, C. F. R., Galván, T. J. V., Cordero, J. F. C., & Luna, C. E. H. (2013). Purification and partial characterization of a thermostable laccase from Pycnoporus sanguineus CS-2 with ability to oxidize high redox po-tential substrates and recalcitrant dyes. Applied Bioremediation-Active and Passive Approaches, 351.

Nazir, A., Soni, R., Saini, H. S., Kaur, A., & Chadha, B. S. (2010). Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Applied biochemistry and biotechnology, 162, 538-547

Reyes-Calderón, A., Garcia-Luquillas, K. R., Ludeña, Y., Hernández-Macedo, M. L., Villena, G. K., & Samolski, I. (2020). A simple and accurate method for specific quantification of biomass in mixed cultures of filamentous fungi by quantitative PCR. Revista peruana de biología, 27(1), 085-090.

Sarris, D., Philippoussis, A., Mallouchos, A., & Diamantopoulou, P. (2020). Valorization of low-cost, carbon-rich substrates by edible ascomycetes and basidiomycetes grown on liquid cultures. FEMS microbiology letters, 367(20), fnaa168.

Sharma, R. K., & Arora, D. S. (2010). Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresource Technology, 101(23), 9248-9253.

Valmaseda, M., Martínez, M. J., & Martinez, A. T. (1991). Kinetics of wheat straw solid-state fermentation with Trametes versicolor and Pleurotus ostreatus—lignin and polysaccharide alteration and production of related enzymatic activi-ties. Applied microbiology and biotechnology, 35, 817-823.

Vasina, D. V., Pavlov, A. R., & Koroleva, O. V. (2016). Extracellular proteins of Trametes hirsuta s t. 072 induced by copper ions and a lignocellulose substrate. BMC microbiology, 16, 1-14.

Zhang, J., Ke, W., & Chen, H. (2020a). Enhancing laccase production by white-rot fungus Trametes hirsuta SSM-3 in co-culture with yeast sporidiobolus pararoseus SSM-8. Preparative Biochemistry & Biotechnology, 50(1), 10-17.

Zhang, Q., Zhao, L., Li, Y., Wang, F., Li, S., Shi, G., & Ding, Z. (2020b). Comparative transcriptomics and transcriptional regulation analysis of enhanced laccase production induced by co-culture of Pleurotus eryngii var. ferulae with Rhodotorula mucilaginosa. Applied microbiology and biotechnology, 104, 241-255.

Publicado

2024-05-31

Cómo citar

López-Sandin, I., Gutiérrez-Soto, G., Elizondo Luevano, J. H., Parra Saldívar , R., Franco Flores, M., Castillo Martínez1, D. y Garza Hernandez, D. M. (2024) «Aprovechamiento de residuos agroindustriales para la obtención de enzimas termoestables degradadoras de pared celular vegetal utilizando un co-cultivo de basidiomicetos », Scientia Agricolis Vita, 1(2), pp. 12–21. doi: 10.29105/agricolis.v1i2.18.