Effect of Trametes maxima CU1 supernatants on the bread physical properties

Authors

  • Iosvany López-Sandin Universidad Autónoma de Nuevo León https://orcid.org/0000-0001-7691-101X
  • Guadalupe Gutiérrez-Soto Universidad Autónoma de Nuevo León https://orcid.org/0000-0001-9754-7755
  • Estefany G. Molar-García Universidad Autónoma de Nuevo León
  • Isaac D. Yáñez-Rangel Universidad Autónoma de Nuevo León
  • Andrea Flores-Guillén Universidad Autónoma de Nuevo León
  • Carlos A. Hernández Martínez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/agricolis.v1i1.4

Keywords:

amylase, cellulases, laccase, Pycnoporus sanguineus CS2, xylanases

Abstract

Enzymes are of great interest to the food industry because of their economic benefits in process optimization and the advantages in functional and rheological properties that positively influence foods. Therefore, in the present work, we evaluated the effect of Trametes maxima CU1 supernatants on the physical parameters of bread. For this, the supernatants of the 18-day cultures were recovered in a mineral medium supplemented with CuSO4, orange peel, or peanut in combination with wheat straw, in addition to the presence of a co-culture with Pycnoporus sanguineus CS2. The titers of laccase, amylases, cellulases, and xylanases were quantified prior to their addition to the bread dough. Once the loaves were obtained, height, hardness, weight loss (%), pores per mm2, and color analysis were determined. The results of the enzyme titers showed a statistically significant difference (p ≤ 0.05) between the treatments, with the medium with 350 mM CuSO4 highlighting the production of laccase, while the medium supplemented with 5% orange peel presented the four types of activities. In general, the breads showed differences (p ≤ 0.05) in the parameters evaluated. It should be noted that the bread treated with the supernatant with orange peel had the highest height and color, like the control, in addition to presenting the lowest hardness among the enzymatic treatments. Therefore, these results demonstrate the effect of the culture medium on the enzymatic profiles of the same fungus and its potential application in the baking industry

Downloads

Download data is not yet available.

Author Biographies

Iosvany López-Sandin, Universidad Autónoma de Nuevo León

Profesor de la Facultad de Agronomía

Guadalupe Gutiérrez-Soto, Universidad Autónoma de Nuevo León

Profesor de la Facultad de Agronomía UANL

Estefany G. Molar-García, Universidad Autónoma de Nuevo León

Estudiante de la Facultad de Agronomía

Isaac D. Yáñez-Rangel, Universidad Autónoma de Nuevo León

Estudiante de la Facultad de Agronomía

Andrea Flores-Guillén, Universidad Autónoma de Nuevo León

Estudiante de la Facultad de Agronomía UANL

Carlos A. Hernández Martínez, Universidad Autónoma de Nuevo León

Profesor de la Facultad de Agronomía UANL

References

ABDULLAHI, X., XHABIRI, G., SULEJMANI, E., & SELIMI, F. (2022). The effect of some additives on the rheology of dough and quality of bread. Acta agriculturae Slovenica, 118(2), 1-7. doi: 10.14720/aas.2022.118.2.2601

Ahmad, Z., Butt, M. S., Ahmed, A., Riaz, M., Sabir, S. M., Farooq, U., & Rehman, F. U. (2014). Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes. Journal of food science and technology, 51, 2445-2453.

Benejam, W., Steffolani, M., & León, A. (2009). Use of enzyme to improve the technological quality of a panettone like baked product. International Journal of Food Science and Technology.doi: 10.1111/j.1365-2621.2009.02019.x

Elisashvili, V., & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. Journal of Biotechnology, 144(1), 37-42. doi: 10.1016/j.jbiotec.2009.06.020

Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T., & Kvesitadze, G. (2008). Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresource technology, 99(3), 457-462.

Eugenio, M. E., Carbajo, J. M., Martín, J. A., Martín-Sampedro, R., González, A. E., & Villar, J. C. (2010). Synergic effect of inductors on laccase production by Pycnoporus sanguineus. Afinidad, 67(546).

Figueroa‐Espinoza, M. C., & Rouau, X. (1998). Oxidative cross‐linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans. Cereal Chemistry, 75(2), 259-265. doi: 10.1094/CCHEM.1998.75.2.259

Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (Family Coprinaceae). Appl Environ Microbiol 64(5):1601–1606. doi: 10.1128/AEM.64.5.1601-1606.1998

Hernández M. (2014). Influencia del α-amilasa sobre las características texturales del pan de agua producto autóctono de Pamplona (N. de S.). Limentech Ciencia y Tecnología Alimentaria. doi:10.24054/16927125.v1.n1.2014.921

Ijoma, G. N., Selvarajan, R., & Tekere, M. (2019). The potential of fungal co-cultures as biological inducers for increased ligninolytic enzymes on agricultural residues. International Journal of Environmental Science and Technology, 16, 305-324. doi: 10.1007/s13762-018-1672-4

Janusz, G., Pawlik, A., Sulej, J., Świderska-Burek, U., Jarosz-Wilkołazka, A., & Paszczyński, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS microbiology reviews, 41(6), 941-962. doi:10.1093/femsre/fux049

Kachlishvili, E., Jokharidze, T., Kobakhidze, A., & Elisashvili, V. (2021). Enhancement of laccase production by Cerrena unicolor through fungal interspecies interaction and optimum conditions determination. Archives of Microbiology, 203(7), 3905-3917. doi: 10.1007/s00203-021-02374-8

Lončar, D. M., Filipović, V. S., & Filipović, J. S. (2016). Optimisation of amylase and xylanase addition in dependance of white flour amylase activity. Hemijska industrija, 70(6), 673-683. doi: 0.2298/HEMIND150814004L

Niño-Medina, G., Gutiérrez-Soto, G., Urías-Orona, V., & Hernández-Luna, C. E. (2017). Effect of laccase from Trametes maxima CU1 on physicochemical quality of bread. Cogent Food & Agriculture, 3(1), 1328762. doi: 10.1080/23311932.2017.1328762

Olivieri, M., Murgia, N., Spiteri, G., Biscardo, C. A., Marchetti, P., Folletti, I., & Verlato, G. (2020). Exposure to additives or multigrain flour is associated with high risk of work-related allergic symptoms among bakers. Occupational and Environ-mental Medicine.

Pinheiro, V. E., Michelin, M., Vici, A. C., de Almeida, P. Z., & Teixeira de Moraes Polizeli, M. D. L. (2020). Trametes versicolor laccase production using agricultural wastes: a comparative study in Erlenmeyer flasks, bioreactor and tray. Bioprocess and biosystems engineering, 43, 507-514. https://doi.org/10.1007/s00449-019-02245-z

Ponte Jr, J. G., Payne, J. D., & Updated by Staff. (2000). Bakery Processes, Yeast‐Raised Products. Kirk‐Othmer Encyclopedia of Chemical Technology. doi: 10.1002/0471238961.2505011916151420.a01.pub2.

Pozdnyakova, N. N., Rodakiewicz-Nowak, J., & Turkovskaya, O. V. (2004). Catalytic properties of yellow laccase from Pleurotus ostreatus D1. Journal of Molecular Catalysis B: Enzymatic, 30(1), 19-24. doi:10.1016/j.molcatb.2004.03.005

Rodrigues, E. M., Karp, S. G., Malucelli, L. C., Helm, C. V., & Alvarez, T. M. (2019). Evaluation of laccase production by Ganoderma lucidum in submerged and solid‐state fermentation using different inducers. Journal of basic microbiology, 59(8), 784-791. doi: 10.1002/JOBM.201900084

Rosell, C. M., & Dura, A. (2015). Enzymes in bakeries. Enzymes in food and beverage processing, 171-204.

Salinas-Sánchez, S. D., López-Sandin, I., Hernández-Luna, C. E., Contreras-Cordero, J. F., Méndez-Zamora, G., Hernán-dez-Martínez, C. A., & Gutiérrez-Soto, G. (2022). Uso de cepas de Pycnoporus sanguineus para la producción de enzimas con potencial uso en la industria de la panificación. Biotecnia, 24(1), 62-68.

Selinheimo, E., Autio, K., Kruus, K., & Buchert, J. (2007). Elucidating the mechanism of laccase and tyrosinase in wheat bread making. Journal of agricultural and food chemistry, 55(15), 6357-6365. doi:10.1021/jf0703349

Sharma, K., Thakur, A., & Goyal, A. (2019). Xylanases for food applications. Green Bio-processes: Enzymes in Industrial Food Processing, 99-118. doi:10.1007/978-981-13-3263-0_7

Sheikholeslami, Z., Mahfouzi, M., Karimi, M., & Ghiafehdavoodi, M. (2021). Modification of dough characteristics and baking quality based on whole wheat flour by enzymes and emulsifiers supplementation. Lwt, 139, 110794.doi: https://doi.org/10.1016/j.lwt.2020.110794

Vrsanska, M., Voberkova, S., Langer, V., Palovcikova, D., Moulick, A., Adam, V., & Kopel, P. (2016). Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules, 21(11), 1553.

Wang, F., Xu, L., Zhao, L., Ding, Z., Ma, H., & Terry, N. (2019). Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: a review. Microorganisms, 7(12), 665. 10.3390/MICROORGANISMS7120665

Wang, J., Bai, H., Zhang, R., Ding, G., Cai, X., Wang, W., ... & Zhang, Y. (2023). Effect of a Bacterial Laccase on the Quality and Micro-Structure of Whole Wheat Bread. Journal of Microbiology and Biotechnology, 33(12), 1671. doi:10.4014/jmb.2305.05008

Published

2024-01-31

How to Cite

López-Sandin, I. (2024) “Effect of Trametes maxima CU1 supernatants on the bread physical properties ”, Scientia Agricolis Vita, 1(1), pp. 10–19. doi: 10.29105/agricolis.v1i1.4.